Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Acta Pharmaceutica Sinica ; (12): 258-273, 2023.
Article in Chinese | WPRIM | ID: wpr-965706

ABSTRACT

The oncogenic product of BCR-ABL is an abnormal tyrosine kinase that causes chronic myeloid leukemia (CML). With further research into the pathogenesis of CML, the discovery of compounds that selectively inhibit abnormal BCR-ABL tyrosine kinases is a research focus worthy of attention. The first three generations of BCR-ABL inhibitors are orthosteric inhibitors, which competitively block the binding of ABL protein tyrosine kinase to ATP and prevent it from activating downstream signals. The fourth-generation BCR-ABL inhibitors allosterically inhibit ABL protein tyrosine kinase by binding to the myristoyl pocket, providing greater selectivity and maintaining activity against drug-resistant mutations proteins. Novel drug design strategies such as proteolytic targeting chimera (PROTAC), covalent inhibitors and dual targeting inhibitors also provide new directions for the development of BCR-ABL kinase inhibitors. This paper reviews recent research advances on BCR-ABL kinase inhibitors and discusses drug design strategies for various novel BCR-ABL inhibitors.

2.
Chinese Medical Journal ; (24): 1382-1386, 2010.
Article in English | WPRIM | ID: wpr-241775

ABSTRACT

<p><b>BACKGROUND</b>Genetic factors can influence antihypertensive response to metoprolol, and many studies focused on the relationship between the genotype in beta1-adrenergic receptor and blood pressure (BP), little was known about the association of angiotensin-converting enzyme (ACE) genotype with the therapeutic result of metoprolol. The present study aimed to investigate whether the ACE gene insertion (I)/deletion (D) polymorphism is related to the response to metoprolol in Chinese Han hypertensive patients.</p><p><b>METHODS</b>Ninety-six patients with essential hypertension received metoprolol (100 mg once daily) as monotherapy for 8 weeks. Twenty-four hours ambulatory blood pressure monitoring and dynamic electrocardiogram were performed before and after treatment. Genotyping analysis was performed using PCR. The association of the ACE gene I/D polymorphism with variations in BP and heart rate (HR) was observed after the 8-week treatment.</p><p><b>RESULTS</b>The patients with ACE gene II polymorphism showed greater reduction in 24-hour average HR than those with ID or DD polymorphisms (P = 0.045), no effect of this genotype on the reduction in seating HR or in BP was observed. After adjusting for age, gender, body mass index, BP and HR at baseline, the ACE gene I/D polymorphism was still an independent predictor for variations in 24-hour average HR.</p><p><b>CONCLUSIONS</b>The II polymorphism in ACE gene could be a candidate predictor for greater reduction in 24-hour average HR in Chinese Han hypertensive patients treated by metoprolol. Greater benefits would be obtained by patients with II polymorphism from the treatment with metoprolol. Larger studies are warranted to validate this finding.</p>


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Antihypertensive Agents , Therapeutic Uses , Genotype , Heart Rate , Genetics , Hypertension , Drug Therapy , Genetics , Metoprolol , Therapeutic Uses , Peptidyl-Dipeptidase A , Genetics , Polymorphism, Genetic , Genetics
3.
Biomedical and Environmental Sciences ; (12): 363-374, 2005.
Article in English | WPRIM | ID: wpr-229741

ABSTRACT

<p><b>OBJECTIVE</b>To develop a specific SARS virus-targeted antibody preparation for emergent prophylaxis and treatment of SARS virus infection.</p><p><b>METHODS</b>By using phage display technology, we constructed a naive antibody library from convalescent SARS patient lymphocytes. To obtain the neutralizing antibody to SARS virus surface proteins, the library panning procedure was performed on purified SARS virions and the specific Fab antibody clones were enriched by four rounds of repeated panning procedure and screened by highthroughput selection. The selected Fab antibodies expressed in the periplasma of E. coli were soluble and further purified and tested for their binding properties and antiviral function to SARS virus. The functional Fab antibodies were converted to full human IgG antibodies with recombinant baculovirus/insect cell systems and their neutralizing activities were further determined.</p><p><b>RESULTS</b>After four rounds of the panning, a number of SARS-CoV virus-targeted human recombinant Fab antibodies were isolated from the SARS patient antibody library. Most of these were identified to recognize both natural and recombinant SARS spike (S) proteins, two Fab antibodies were specific for the virus membrane (M) protein, only one bound to SARS-CoV nucleocapsid protein. The SARS-CoV S and M protein-targeted Fab or IgG antibodies showed significant neutralizing activities in cytopathic effect (CPE) inhibition neutralization test, these antibodies were able to completely neutralize the SARS virus and protect the Vero cells from CPE after virus infection. However, the N protein-targeted Fab or IgG antibodies failed to neutralize the virus. In addition, the SARS N protein-targeted human Fab antibody reacted with the denatured N proteins, whereas none of the S and M protein specific neutralizing antibodies did. These results suggested that the S and M protein-specific neutralizing antibodies could recognize conformational epitopes which might be involved in the binding of virions to cellular receptors and the fusion activity of the virus.</p><p><b>CONCLUSION</b>The SARS-CoV spike protein and membrane proteins are able to elicite efficient neutralizing antibodies in SARS patients. The neutralizing antibodies we generated in this study may be more promising candidates for prophylaxis and treatment of SARS infection.</p>


Subject(s)
Animals , Humans , Amino Acid Sequence , Antibodies, Viral , Allergy and Immunology , Chlorocebus aethiops , Membrane Glycoproteins , Allergy and Immunology , Neutralization Tests , Peptide Library , Protein Binding , Protein Engineering , Recombinant Proteins , Allergy and Immunology , Severe acute respiratory syndrome-related coronavirus , Allergy and Immunology , Severe Acute Respiratory Syndrome , Allergy and Immunology , Virology , Spike Glycoprotein, Coronavirus , Vero Cells , Viral Envelope Proteins , Allergy and Immunology , Viral Matrix Proteins , Allergy and Immunology
SELECTION OF CITATIONS
SEARCH DETAIL